This is an automated email from the git hooks/post-receive script. It was
generated because a ref change was pushed to the repository containing
the project "CMU Common Lisp".
The branch, master has been updated
via da059a86b5eca795f157ca85e74520a76ab5207f (commit)
from cef7a420993388f21ea2ba733b57b3651f4f5b3b (commit)
Those revisions listed above that are new to this repository have
not appeared on any other notification email; so we list those
revisions in full, below.
- Log -----------------------------------------------------------------
commit da059a86b5eca795f157ca85e74520a76ab5207f
Author: Raymond Toy <toy.raymond(a)gmail.com>
Date: Sun Jul 20 20:54:01 2014 -0700
Import fdlibm trig functions; as is, from netlib.
diff --git a/src/lisp/k_cos.c b/src/lisp/k_cos.c
new file mode 100644
index 0000000..7fb855d
--- /dev/null
+++ b/src/lisp/k_cos.c
@@ -0,0 +1,92 @@
+
+/* @(#)k_cos.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * __kernel_cos( x, y )
+ * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ *
+ * Algorithm
+ * 1. Since cos(-x) = cos(x), we need only to consider positive x.
+ * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
+ * 3. cos(x) is approximated by a polynomial of degree 14 on
+ * [0,pi/4]
+ * 4 14
+ * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
+ * where the remez error is
+ *
+ * | 2 4 6 8 10 12 14 | -58
+ * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
+ * | |
+ *
+ * 4 6 8 10 12 14
+ * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
+ * cos(x) = 1 - x*x/2 + r
+ * since cos(x+y) ~ cos(x) - sin(x)*y
+ * ~ cos(x) - x*y,
+ * a correction term is necessary in cos(x) and hence
+ * cos(x+y) = 1 - (x*x/2 - (r - x*y))
+ * For better accuracy when x > 0.3, let qx = |x|/4 with
+ * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
+ * Then
+ * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
+ * Note that 1-qx and (x*x/2-qx) is EXACT here, and the
+ * magnitude of the latter is at least a quarter of x*x/2,
+ * thus, reducing the rounding error in the subtraction.
+ */
+
+#include "fdlibm.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
+C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
+C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
+C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
+C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
+C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
+C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
+
+#ifdef __STDC__
+ double __kernel_cos(double x, double y)
+#else
+ double __kernel_cos(x, y)
+ double x,y;
+#endif
+{
+ double a,hz,z,r,qx;
+ int ix;
+ ix = __HI(x)&0x7fffffff; /* ix = |x|'s high word*/
+ if(ix<0x3e400000) { /* if x < 2**27 */
+ if(((int)x)==0) return one; /* generate inexact */
+ }
+ z = x*x;
+ r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
+ if(ix < 0x3FD33333) /* if |x| < 0.3 */
+ return one - (0.5*z - (z*r - x*y));
+ else {
+ if(ix > 0x3fe90000) { /* x > 0.78125 */
+ qx = 0.28125;
+ } else {
+ __HI(qx) = ix-0x00200000; /* x/4 */
+ __LO(qx) = 0;
+ }
+ hz = 0.5*z-qx;
+ a = one-qx;
+ return a - (hz - (z*r-x*y));
+ }
+}
diff --git a/src/lisp/k_sin.c b/src/lisp/k_sin.c
new file mode 100644
index 0000000..dfcad76
--- /dev/null
+++ b/src/lisp/k_sin.c
@@ -0,0 +1,74 @@
+
+/* @(#)k_sin.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* __kernel_sin( x, y, iy)
+ * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
+ *
+ * Algorithm
+ * 1. Since sin(-x) = -sin(x), we need only to consider positive x.
+ * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
+ * 3. sin(x) is approximated by a polynomial of degree 13 on
+ * [0,pi/4]
+ * 3 13
+ * sin(x) ~ x + S1*x + ... + S6*x
+ * where
+ *
+ * |sin(x) 2 4 6 8 10 12 | -58
+ * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
+ * | x |
+ *
+ * 4. sin(x+y) = sin(x) + sin'(x')*y
+ * ~ sin(x) + (1-x*x/2)*y
+ * For better accuracy, let
+ * 3 2 2 2 2
+ * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
+ * then 3 2
+ * sin(x) = x + (S1*x + (x *(r-y/2)+y))
+ */
+
+#include "fdlibm.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
+S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
+S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
+S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
+S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
+S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
+S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
+
+#ifdef __STDC__
+ double __kernel_sin(double x, double y, int iy)
+#else
+ double __kernel_sin(x, y, iy)
+ double x,y; int iy; /* iy=0 if y is zero */
+#endif
+{
+ double z,r,v;
+ int ix;
+ ix = __HI(x)&0x7fffffff; /* high word of x */
+ if(ix<0x3e400000) /* |x| < 2**-27 */
+ {if((int)x==0) return x;} /* generate inexact */
+ z = x*x;
+ v = z*x;
+ r = S2+z*(S3+z*(S4+z*(S5+z*S6)));
+ if(iy==0) return x+v*(S1+z*r);
+ else return x-((z*(half*y-v*r)-y)-v*S1);
+}
diff --git a/src/lisp/k_tan.c b/src/lisp/k_tan.c
new file mode 100644
index 0000000..017c1e5
--- /dev/null
+++ b/src/lisp/k_tan.c
@@ -0,0 +1,148 @@
+#pragma ident "@(#)k_tan.c 1.5 04/04/22 SMI"
+
+/*
+ * ====================================================
+ * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* INDENT OFF */
+/* __kernel_tan( x, y, k )
+ * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ * Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
+ *
+ * Algorithm
+ * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
+ * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
+ * 3. tan(x) is approximated by a odd polynomial of degree 27 on
+ * [0,0.67434]
+ * 3 27
+ * tan(x) ~ x + T1*x + ... + T13*x
+ * where
+ *
+ * |tan(x) 2 4 26 | -59.2
+ * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
+ * | x |
+ *
+ * Note: tan(x+y) = tan(x) + tan'(x)*y
+ * ~ tan(x) + (1+x*x)*y
+ * Therefore, for better accuracy in computing tan(x+y), let
+ * 3 2 2 2 2
+ * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
+ * then
+ * 3 2
+ * tan(x+y) = x + (T1*x + (x *(r+y)+y))
+ *
+ * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
+ * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
+ * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
+ */
+
+#include "fdlibm.h"
+
+static const double xxx[] = {
+ 3.33333333333334091986e-01, /* 3FD55555, 55555563 */
+ 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
+ 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
+ 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
+ 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
+ 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
+ 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
+ 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
+ 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
+ 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
+ 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
+ -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
+ 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
+/* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
+/* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
+/* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
+};
+#define one xxx[13]
+#define pio4 xxx[14]
+#define pio4lo xxx[15]
+#define T xxx
+/* INDENT ON */
+
+double
+__kernel_tan(double x, double y, int iy) {
+ double z, r, v, w, s;
+ int ix, hx;
+
+ hx = __HI(x); /* high word of x */
+ ix = hx & 0x7fffffff; /* high word of |x| */
+ if (ix < 0x3e300000) { /* x < 2**-28 */
+ if ((int) x == 0) { /* generate inexact */
+ if (((ix | __LO(x)) | (iy + 1)) == 0)
+ return one / fabs(x);
+ else {
+ if (iy == 1)
+ return x;
+ else { /* compute -1 / (x+y) carefully */
+ double a, t;
+
+ z = w = x + y;
+ __LO(z) = 0;
+ v = y - (z - x);
+ t = a = -one / w;
+ __LO(t) = 0;
+ s = one + t * z;
+ return t + a * (s + t * v);
+ }
+ }
+ }
+ }
+ if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
+ if (hx < 0) {
+ x = -x;
+ y = -y;
+ }
+ z = pio4 - x;
+ w = pio4lo - y;
+ x = z + w;
+ y = 0.0;
+ }
+ z = x * x;
+ w = z * z;
+ /*
+ * Break x^5*(T[1]+x^2*T[2]+...) into
+ * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
+ * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
+ */
+ r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
+ w * T[11]))));
+ v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
+ w * T[12])))));
+ s = z * x;
+ r = y + z * (s * (r + v) + y);
+ r += T[0] * s;
+ w = x + r;
+ if (ix >= 0x3FE59428) {
+ v = (double) iy;
+ return (double) (1 - ((hx >> 30) & 2)) *
+ (v - 2.0 * (x - (w * w / (w + v) - r)));
+ }
+ if (iy == 1)
+ return w;
+ else {
+ /*
+ * if allow error up to 2 ulp, simply return
+ * -1.0 / (x+r) here
+ */
+ /* compute -1.0 / (x+r) accurately */
+ double a, t;
+ z = w;
+ __LO(z) = 0;
+ v = r - (z - x); /* z+v = r+x */
+ t = a = -1.0 / w; /* a = -1.0/w */
+ __LO(t) = 0;
+ s = 1.0 + t * z;
+ return t + a * (s + t * v);
+ }
+}
diff --git a/src/lisp/s_cos.c b/src/lisp/s_cos.c
new file mode 100644
index 0000000..3bab516
--- /dev/null
+++ b/src/lisp/s_cos.c
@@ -0,0 +1,78 @@
+
+/* @(#)s_cos.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* cos(x)
+ * Return cosine function of x.
+ *
+ * kernel function:
+ * __kernel_sin ... sine function on [-pi/4,pi/4]
+ * __kernel_cos ... cosine function on [-pi/4,pi/4]
+ * __ieee754_rem_pio2 ... argument reduction routine
+ *
+ * Method.
+ * Let S,C and T denote the sin, cos and tan respectively on
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ * in [-pi/4 , +pi/4], and let n = k mod 4.
+ * We have
+ *
+ * n sin(x) cos(x) tan(x)
+ * ----------------------------------------------------------
+ * 0 S C T
+ * 1 C -S -1/T
+ * 2 -S -C T
+ * 3 -C S -1/T
+ * ----------------------------------------------------------
+ *
+ * Special cases:
+ * Let trig be any of sin, cos, or tan.
+ * trig(+-INF) is NaN, with signals;
+ * trig(NaN) is that NaN;
+ *
+ * Accuracy:
+ * TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include "fdlibm.h"
+
+#ifdef __STDC__
+ double cos(double x)
+#else
+ double cos(x)
+ double x;
+#endif
+{
+ double y[2],z=0.0;
+ int n, ix;
+
+ /* High word of x. */
+ ix = __HI(x);
+
+ /* |x| ~< pi/4 */
+ ix &= 0x7fffffff;
+ if(ix <= 0x3fe921fb) return __kernel_cos(x,z);
+
+ /* cos(Inf or NaN) is NaN */
+ else if (ix>=0x7ff00000) return x-x;
+
+ /* argument reduction needed */
+ else {
+ n = __ieee754_rem_pio2(x,y);
+ switch(n&3) {
+ case 0: return __kernel_cos(y[0],y[1]);
+ case 1: return -__kernel_sin(y[0],y[1],1);
+ case 2: return -__kernel_cos(y[0],y[1]);
+ default:
+ return __kernel_sin(y[0],y[1],1);
+ }
+ }
+}
diff --git a/src/lisp/s_sin.c b/src/lisp/s_sin.c
new file mode 100644
index 0000000..43394e5
--- /dev/null
+++ b/src/lisp/s_sin.c
@@ -0,0 +1,78 @@
+
+/* @(#)s_sin.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* sin(x)
+ * Return sine function of x.
+ *
+ * kernel function:
+ * __kernel_sin ... sine function on [-pi/4,pi/4]
+ * __kernel_cos ... cose function on [-pi/4,pi/4]
+ * __ieee754_rem_pio2 ... argument reduction routine
+ *
+ * Method.
+ * Let S,C and T denote the sin, cos and tan respectively on
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ * in [-pi/4 , +pi/4], and let n = k mod 4.
+ * We have
+ *
+ * n sin(x) cos(x) tan(x)
+ * ----------------------------------------------------------
+ * 0 S C T
+ * 1 C -S -1/T
+ * 2 -S -C T
+ * 3 -C S -1/T
+ * ----------------------------------------------------------
+ *
+ * Special cases:
+ * Let trig be any of sin, cos, or tan.
+ * trig(+-INF) is NaN, with signals;
+ * trig(NaN) is that NaN;
+ *
+ * Accuracy:
+ * TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include "fdlibm.h"
+
+#ifdef __STDC__
+ double sin(double x)
+#else
+ double sin(x)
+ double x;
+#endif
+{
+ double y[2],z=0.0;
+ int n, ix;
+
+ /* High word of x. */
+ ix = __HI(x);
+
+ /* |x| ~< pi/4 */
+ ix &= 0x7fffffff;
+ if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);
+
+ /* sin(Inf or NaN) is NaN */
+ else if (ix>=0x7ff00000) return x-x;
+
+ /* argument reduction needed */
+ else {
+ n = __ieee754_rem_pio2(x,y);
+ switch(n&3) {
+ case 0: return __kernel_sin(y[0],y[1],1);
+ case 1: return __kernel_cos(y[0],y[1]);
+ case 2: return -__kernel_sin(y[0],y[1],1);
+ default:
+ return -__kernel_cos(y[0],y[1]);
+ }
+ }
+}
diff --git a/src/lisp/s_tan.c b/src/lisp/s_tan.c
new file mode 100644
index 0000000..1f5564b
--- /dev/null
+++ b/src/lisp/s_tan.c
@@ -0,0 +1,72 @@
+
+/* @(#)s_tan.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* tan(x)
+ * Return tangent function of x.
+ *
+ * kernel function:
+ * __kernel_tan ... tangent function on [-pi/4,pi/4]
+ * __ieee754_rem_pio2 ... argument reduction routine
+ *
+ * Method.
+ * Let S,C and T denote the sin, cos and tan respectively on
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ * in [-pi/4 , +pi/4], and let n = k mod 4.
+ * We have
+ *
+ * n sin(x) cos(x) tan(x)
+ * ----------------------------------------------------------
+ * 0 S C T
+ * 1 C -S -1/T
+ * 2 -S -C T
+ * 3 -C S -1/T
+ * ----------------------------------------------------------
+ *
+ * Special cases:
+ * Let trig be any of sin, cos, or tan.
+ * trig(+-INF) is NaN, with signals;
+ * trig(NaN) is that NaN;
+ *
+ * Accuracy:
+ * TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include "fdlibm.h"
+
+#ifdef __STDC__
+ double tan(double x)
+#else
+ double tan(x)
+ double x;
+#endif
+{
+ double y[2],z=0.0;
+ int n, ix;
+
+ /* High word of x. */
+ ix = __HI(x);
+
+ /* |x| ~< pi/4 */
+ ix &= 0x7fffffff;
+ if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
+
+ /* tan(Inf or NaN) is NaN */
+ else if (ix>=0x7ff00000) return x-x; /* NaN */
+
+ /* argument reduction needed */
+ else {
+ n = __ieee754_rem_pio2(x,y);
+ return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
+ -1 -- n odd */
+ }
+}
-----------------------------------------------------------------------
Summary of changes:
src/lisp/k_cos.c | 92 +++++++++++++++++++++++++++++++++
src/lisp/k_sin.c | 74 +++++++++++++++++++++++++++
src/lisp/k_tan.c | 148 ++++++++++++++++++++++++++++++++++++++++++++++++++++++
src/lisp/s_cos.c | 78 ++++++++++++++++++++++++++++
src/lisp/s_sin.c | 78 ++++++++++++++++++++++++++++
src/lisp/s_tan.c | 72 ++++++++++++++++++++++++++
6 files changed, 542 insertions(+)
create mode 100644 src/lisp/k_cos.c
create mode 100644 src/lisp/k_sin.c
create mode 100644 src/lisp/k_tan.c
create mode 100644 src/lisp/s_cos.c
create mode 100644 src/lisp/s_sin.c
create mode 100644 src/lisp/s_tan.c
hooks/post-receive
--
CMU Common Lisp