... |
... |
@@ -1726,6 +1726,46 @@ Z may be any number, but the result is always a complex." |
1726
|
1726
|
(asinh (imagpart (* (conjugate sqrt-1+z)
|
1727
|
1727
|
sqrt-1-z))))))))
|
1728
|
1728
|
|
|
1729
|
+;; acosh(z) = 2*log(sqrt((x+1)/2) + sqrt((x-1)/2))
|
|
1730
|
+;;
|
|
1731
|
+;; For z = x, 0 <= x < 1
|
|
1732
|
+;; acosh(z) = 2*log(sqrt((x+1)/2) + sqrt((x-1)/2))
|
|
1733
|
+;; = 2*log(sqrt((x+1)/2) + i*sqrt((1-x)/2))
|
|
1734
|
+;; = 2*(log(1) + i*arg(sqrt((x+1)/2) + i*sqrt((1-x)/2)))
|
|
1735
|
+;; = 2*i*atan(sqrt((1-x)/2), sqrt((x+1)/2))
|
|
1736
|
+;; = 2*i*atan(sqrt((1-x)/(1+x)))
|
|
1737
|
+;;
|
|
1738
|
+;; For z = -x, x > 1
|
|
1739
|
+;; acosh(z) = 2*log(sqrt((1-x)/2) + sqrt((-x-1)/2))
|
|
1740
|
+;; = 2*log((i*sqrt((x-1)/2) + 0 + i*sqrt((1+x)/2)) + 0)
|
|
1741
|
+;; = 2*log(i*(sqrt((x-1)/2) + sqrt((1+x)/2)) + 0)
|
|
1742
|
+;; = 2*(log(sqrt((x-1)/2) + sqrt((1+x)/2)) + i*arg(sqrt((x-1)/2) + sqrt((1+x)/2)) + 0)
|
|
1743
|
+;; = 2*(log(sqrt((x-1)/2) + sqrt((1+x)/2)) + i*pi/2)
|
|
1744
|
+;; = 2*log(x+sqrt(x+1)*sqrt(x-1)) + i*pi
|
|
1745
|
+;;
|
|
1746
|
+;; For z = x + i0, 0 <= x < 1
|
|
1747
|
+;; acosh(z) = 2*log(sqrt((1+x)/2+i0) + sqrt((x-1)/2+i0))
|
|
1748
|
+;; = 2*log(sqrt((1+x)/2)+i0 + i*sqrt((1-x)/2) + 0)
|
|
1749
|
+;; = 2*log(sqrt((1+x)/2) + i*sqrt((1-x)/2))
|
|
1750
|
+;; = 2*(log(1) + i*arg(sqrt((1+x)/2) + i*sqrt((1-x)/2))
|
|
1751
|
+;; = 0 + 2*i*atan(sqrt((1-x)/2)/sqrt((1+x)/2)) +
|
|
1752
|
+;; = 0 + 2*i*atan(sqrt((1-x)/(1+x))
|
|
1753
|
+;;
|
|
1754
|
+;; This is the same value we got for acosh(x), 0 <= x < 1. Hence,
|
|
1755
|
+;; acosh is continuous with quadrant I on the branch cut for 0 <= x <
|
|
1756
|
+;; 1.
|
|
1757
|
+;;
|
|
1758
|
+;; Finally, for z = -x + i0, x > 1
|
|
1759
|
+;; acosh(z) = 2*log(sqrt((1-x)/2+i0) + sqrt((-x-1)/2+i0))
|
|
1760
|
+;; = 2*log(i*sqrt((x-1)/2) + 0 + i*sqrt((1+x)/2 + i0))
|
|
1761
|
+;; = 2*log(i*(sqrt((x-1)/2) + sqrt((1+x)/2)) + 0)
|
|
1762
|
+;; = 2*(log(sqrt((x-1)/2) + sqrt((1+x)/2)) + i*arg(0, (sqrt((x-1)/2) + sqrt((1+x)/2)))
|
|
1763
|
+;; = 2*(log(sqrt((x-1)/2) + sqrt((1+x)/2)) + i*pi/2)
|
|
1764
|
+;; = 2*log(sqrt((x-1)/2) + sqrt((1+x)/2)) + i*pi
|
|
1765
|
+;;
|
|
1766
|
+;; We see that this is the same expression for acosh(z), z < -1.
|
|
1767
|
+;; Hence, acosh(z) is continuous with quadrant II on the branch cut x
|
|
1768
|
+;; < -1.
|
1729
|
1769
|
(defun complex-acosh (z)
|
1730
|
1770
|
"Compute acosh z = 2 * log(sqrt((z+1)/2) + sqrt((z-1)/2))
|
1731
|
1771
|
|