| 
 
 | 
1
 | 
+
  | 
| 
 
 | 
2
 | 
+/* @(#)e_hypot.c 1.3 95/01/18 */
  | 
| 
 
 | 
3
 | 
+/*
  | 
| 
 
 | 
4
 | 
+ * ====================================================
  | 
| 
 
 | 
5
 | 
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  | 
| 
 
 | 
6
 | 
+ *
  | 
| 
 
 | 
7
 | 
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
  | 
| 
 
 | 
8
 | 
+ * Permission to use, copy, modify, and distribute this
  | 
| 
 
 | 
9
 | 
+ * software is freely granted, provided that this notice 
  | 
| 
 
 | 
10
 | 
+ * is preserved.
  | 
| 
 
 | 
11
 | 
+ * ====================================================
  | 
| 
 
 | 
12
 | 
+ */
  | 
| 
 
 | 
13
 | 
+
  | 
| 
 
 | 
14
 | 
+/* __ieee754_hypot(x,y)
  | 
| 
 
 | 
15
 | 
+ *
  | 
| 
 
 | 
16
 | 
+ * Method :                  
  | 
| 
 
 | 
17
 | 
+ *	If (assume round-to-nearest) z=x*x+y*y 
  | 
| 
 
 | 
18
 | 
+ *	has error less than sqrt(2)/2 ulp, than 
  | 
| 
 
 | 
19
 | 
+ *	sqrt(z) has error less than 1 ulp (exercise).
  | 
| 
 
 | 
20
 | 
+ *
  | 
| 
 
 | 
21
 | 
+ *	So, compute sqrt(x*x+y*y) with some care as 
  | 
| 
 
 | 
22
 | 
+ *	follows to get the error below 1 ulp:
  | 
| 
 
 | 
23
 | 
+ *
  | 
| 
 
 | 
24
 | 
+ *	Assume x>y>0;
  | 
| 
 
 | 
25
 | 
+ *	(if possible, set rounding to round-to-nearest)
  | 
| 
 
 | 
26
 | 
+ *	1. if x > 2y  use
  | 
| 
 
 | 
27
 | 
+ *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
  | 
| 
 
 | 
28
 | 
+ *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else
  | 
| 
 
 | 
29
 | 
+ *	2. if x <= 2y use
  | 
| 
 
 | 
30
 | 
+ *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
  | 
| 
 
 | 
31
 | 
+ *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, 
  | 
| 
 
 | 
32
 | 
+ *	y1= y with lower 32 bits chopped, y2 = y-y1.
  | 
| 
 
 | 
33
 | 
+ *		
  | 
| 
 
 | 
34
 | 
+ *	NOTE: scaling may be necessary if some argument is too 
  | 
| 
 
 | 
35
 | 
+ *	      large or too tiny
  | 
| 
 
 | 
36
 | 
+ *
  | 
| 
 
 | 
37
 | 
+ * Special cases:
  | 
| 
 
 | 
38
 | 
+ *	hypot(x,y) is INF if x or y is +INF or -INF; else
  | 
| 
 
 | 
39
 | 
+ *	hypot(x,y) is NAN if x or y is NAN.
  | 
| 
 
 | 
40
 | 
+ *
  | 
| 
 
 | 
41
 | 
+ * Accuracy:
  | 
| 
 
 | 
42
 | 
+ * 	hypot(x,y) returns sqrt(x^2+y^2) with error less 
  | 
| 
 
 | 
43
 | 
+ * 	than 1 ulps (units in the last place) 
  | 
| 
 
 | 
44
 | 
+ */
  | 
| 
 
 | 
45
 | 
+
  | 
| 
 
 | 
46
 | 
+#include "fdlibm.h"
  | 
| 
 
 | 
47
 | 
+
  | 
| 
 
 | 
48
 | 
+static inline void
  | 
| 
 
 | 
49
 | 
+set_hiword(double* d, int hi)
  | 
| 
 
 | 
50
 | 
+{
 | 
| 
 
 | 
51
 | 
+    union { int i[2]; double d; } ux;
 | 
| 
 
 | 
52
 | 
+
  | 
| 
 
 | 
53
 | 
+    ux.d = *d;
  | 
| 
 
 | 
54
 | 
+    ux.i[HIWORD] = hi;
  | 
| 
 
 | 
55
 | 
+    *d = ux.d;
  | 
| 
 
 | 
56
 | 
+}
  | 
| 
 
 | 
57
 | 
+
  | 
| 
 
 | 
58
 | 
+static inline int
  | 
| 
 
 | 
59
 | 
+get_loword(double d) 
  | 
| 
 
 | 
60
 | 
+{
 | 
| 
 
 | 
61
 | 
+    union { int i[2]; double d; } ux;
 | 
| 
 
 | 
62
 | 
+    ux.d = d;
  | 
| 
 
 | 
63
 | 
+    return ux.i[LOWORD];
  | 
| 
 
 | 
64
 | 
+}
  | 
| 
 
 | 
65
 | 
+
  | 
| 
 
 | 
66
 | 
+static inline int
  | 
| 
 
 | 
67
 | 
+get_hiword(double d)
  | 
| 
 
 | 
68
 | 
+{
 | 
| 
 
 | 
69
 | 
+    union { int i[2]; double d; } ux;
 | 
| 
 
 | 
70
 | 
+    ux.d = d;
  | 
| 
 
 | 
71
 | 
+
  | 
| 
 
 | 
72
 | 
+    return ux.i[HIWORD];
  | 
| 
 
 | 
73
 | 
+}
  | 
| 
 
 | 
74
 | 
+
  | 
| 
 
 | 
75
 | 
+    
  | 
| 
 
 | 
76
 | 
+#ifdef __STDC__
  | 
| 
 
 | 
77
 | 
+	double __ieee754_hypot(double x, double y)
  | 
| 
 
 | 
78
 | 
+#else
  | 
| 
 
 | 
79
 | 
+	double __ieee754_hypot(x,y)
  | 
| 
 
 | 
80
 | 
+	double x, y;
  | 
| 
 
 | 
81
 | 
+#endif
  | 
| 
 
 | 
82
 | 
+{
 | 
| 
 
 | 
83
 | 
+	double a=x,b=y,t1,t2,y1,y2,w;
  | 
| 
 
 | 
84
 | 
+	int j,k,ha,hb;
  | 
| 
 
 | 
85
 | 
+
  | 
| 
 
 | 
86
 | 
+	ha = get_hiword(x)&0x7fffffff;	/* high word of  x */
  | 
| 
 
 | 
87
 | 
+	hb = get_hiword(y)&0x7fffffff;	/* high word of  y */
  | 
| 
 
 | 
88
 | 
+	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
 | 
| 
 
 | 
89
 | 
+	set_hiword(&a,ha);	/* a <- |a| */
  | 
| 
 
 | 
90
 | 
+	set_hiword(&b, hb);	/* b <- |b| */
  | 
| 
 
 | 
91
 | 
+	
  | 
| 
 
 | 
92
 | 
+	if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
 | 
| 
 
 | 
93
 | 
+	k=0;
  | 
| 
 
 | 
94
 | 
+	if(ha > 0x5f300000) {	/* a>2**500 */
 | 
| 
 
 | 
95
 | 
+	   if(ha >= 0x7ff00000) {	/* Inf or NaN */
 | 
| 
 
 | 
96
 | 
+	       w = a+b;			/* for sNaN */
  | 
| 
 
 | 
97
 | 
+	       if(((ha&0xfffff)|get_loword(a))==0) w = a;
  | 
| 
 
 | 
98
 | 
+	       if(((hb^0x7ff00000)|get_loword(b))==0) w = b;
  | 
| 
 
 | 
99
 | 
+	       return w;
  | 
| 
 
 | 
100
 | 
+	   }
  | 
| 
 
 | 
101
 | 
+	   /* scale a and b by 2**-600 */
  | 
| 
 
 | 
102
 | 
+	   ha -= 0x25800000; hb -= 0x25800000;	k += 600;
  | 
| 
 
 | 
103
 | 
+	   set_hiword(&a, ha);
  | 
| 
 
 | 
104
 | 
+	   set_hiword(&b, hb);
  | 
| 
 
 | 
105
 | 
+	}
  | 
| 
 
 | 
106
 | 
+	if(hb < 0x20b00000) {	/* b < 2**-500 */
 | 
| 
 
 | 
107
 | 
+	    if(hb <= 0x000fffff) {	/* subnormal b or 0 */	
 | 
| 
 
 | 
108
 | 
+		if((hb|(get_loword(b)))==0) return a;
  | 
| 
 
 | 
109
 | 
+		t1=0;
  | 
| 
 
 | 
110
 | 
+		set_hiword(&t1, 0x7fd00000); /* t1=2^1022 */
  | 
| 
 
 | 
111
 | 
+		b *= t1;
  | 
| 
 
 | 
112
 | 
+		a *= t1;
  | 
| 
 
 | 
113
 | 
+		k -= 1022;
  | 
| 
 
 | 
114
 | 
+	    } else {		/* scale a and b by 2^600 */
 | 
| 
 
 | 
115
 | 
+	        ha += 0x25800000; 	/* a *= 2^600 */
  | 
| 
 
 | 
116
 | 
+		hb += 0x25800000;	/* b *= 2^600 */
  | 
| 
 
 | 
117
 | 
+		k -= 600;
  | 
| 
 
 | 
118
 | 
+		set_hiword(&a, ha);
  | 
| 
 
 | 
119
 | 
+		set_hiword(&b, hb);
  | 
| 
 
 | 
120
 | 
+	    }
  | 
| 
 
 | 
121
 | 
+	}
  | 
| 
 
 | 
122
 | 
+    /* medium size a and b */
  | 
| 
 
 | 
123
 | 
+	w = a-b;
  | 
| 
 
 | 
124
 | 
+	if (w>b) {
 | 
| 
 
 | 
125
 | 
+	    t1 = 0;
  | 
| 
 
 | 
126
 | 
+	    set_hiword(&t1, ha);
  | 
| 
 
 | 
127
 | 
+	    t2 = a-t1;
  | 
| 
 
 | 
128
 | 
+	    w  = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
  | 
| 
 
 | 
129
 | 
+	} else {
 | 
| 
 
 | 
130
 | 
+	    a  = a+a;
  | 
| 
 
 | 
131
 | 
+	    y1 = 0;
  | 
| 
 
 | 
132
 | 
+	    set_hiword(&y1, hb);
  | 
| 
 
 | 
133
 | 
+	    y2 = b - y1;
  | 
| 
 
 | 
134
 | 
+	    t1 = 0;
  | 
| 
 
 | 
135
 | 
+	    set_hiword(&t1, ha+0x00100000);
  | 
| 
 
 | 
136
 | 
+	    t2 = a - t1;
  | 
| 
 
 | 
137
 | 
+	    w  = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
  | 
| 
 
 | 
138
 | 
+	}
  | 
| 
 
 | 
139
 | 
+	if(k!=0) {
 | 
| 
 
 | 
140
 | 
+	    t1 = 1.0;
  | 
| 
 
 | 
141
 | 
+	    set_hiword(&t1, get_hiword(t1) + (k<<20));
  | 
| 
 
 | 
142
 | 
+	    return t1*w;
  | 
| 
 
 | 
143
 | 
+	} else return w;
  | 
| 
 
 | 
144
 | 
+}  |