Raymond Toy pushed to branch master at cmucl / cmucl
Commits:
-
3416f6d5
by Raymond Toy at 2026-01-08T08:13:59-08:00
-
f8d90cd0
by Raymond Toy at 2026-01-08T08:13:59-08:00
4 changed files:
Changes:
| ... | ... | @@ -593,26 +593,250 @@ |
| 593 | 593 | (build-ratio x y)
|
| 594 | 594 | (build-ratio (truncate x gcd) (truncate y gcd))))))
|
| 595 | 595 | |
| 596 | +;; An implementation of Baudin and Smith's robust complex division for
|
|
| 597 | +;; double-floats. This is a pretty straightforward translation of the
|
|
| 598 | +;; original in https://arxiv.org/pdf/1210.4539.
|
|
| 599 | +;;
|
|
| 600 | +;; This also includes improvements mentioned in
|
|
| 601 | +;; https://lpc.events/event/11/contributions/1005/attachments/856/1625/Complex_divide.pdf.
|
|
| 602 | +;; In particular iteration 1 and 3 are added. Iteration 2 and 4 were
|
|
| 603 | +;; not added. The test examples from iteration 2 and 4 didn't change
|
|
| 604 | +;; with or without changes added.
|
|
| 605 | +(defconstant +cdiv-rmin+ least-positive-normalized-double-float)
|
|
| 606 | +(defconstant +cdiv-rbig+ (/ most-positive-double-float 2))
|
|
| 607 | +(defconstant +cdiv-rmin2+ (scale-float 1d0 -53))
|
|
| 608 | +(defconstant +cdiv-rminscal+ (scale-float 1d0 51))
|
|
| 609 | +(defconstant +cdiv-rmax2+ (* +cdiv-rbig+ +cdiv-rmin2+))
|
|
| 610 | +;; This is the value of %eps from Scilab
|
|
| 611 | +(defconstant +cdiv-eps+ (scale-float 1d0 -52))
|
|
| 612 | +(defconstant +cdiv-be+ (/ 2 (* +cdiv-eps+ +cdiv-eps+)))
|
|
| 613 | +(defconstant +cdiv-2/eps+ (/ 2 +cdiv-eps+))
|
|
| 614 | + |
|
| 615 | +;; Make these functions accessible. cdiv-double-float and
|
|
| 616 | +;; cdiv-single-float are used by deftransforms. Of course, two-arg-/
|
|
| 617 | +;; is the interface to division. cdiv-generic isn't used anywhere
|
|
| 618 | +;; else.
|
|
| 619 | +(declaim (ext:start-block cdiv-double-float cdiv-single-float two-arg-/))
|
|
| 620 | + |
|
| 621 | +(defun cdiv-double-float (x y)
|
|
| 622 | + "Accurate division of complex double-float numbers x and y."
|
|
| 623 | + (declare (type (complex double-float) x y)
|
|
| 624 | + (optimize (speed 3) (safety 0)))
|
|
| 625 | + (labels
|
|
| 626 | + ((internal-compreal (a b c d r tt)
|
|
| 627 | + (declare (double-float a b c d r tt))
|
|
| 628 | + ;; Compute the real part of the complex division
|
|
| 629 | + ;; (a+ib)/(c+id), assuming |c| <= |d|. r = d/c and tt = 1/(c+d*r).
|
|
| 630 | + ;;
|
|
| 631 | + ;; The realpart is (a*c+b*d)/(c^2+d^2).
|
|
| 632 | + ;;
|
|
| 633 | + ;; c^2+d^2 = c*(c+d*(d/c)) = c*(c+d*r)
|
|
| 634 | + ;;
|
|
| 635 | + ;; Then
|
|
| 636 | + ;;
|
|
| 637 | + ;; (a*c+b*d)/(c^2+d^2) = (a*c+b*d)/(c*(c+d*r))
|
|
| 638 | + ;; = (a + b*d/c)/(c+d*r)
|
|
| 639 | + ;; = (a + b*r)/(c + d*r).
|
|
| 640 | + ;;
|
|
| 641 | + ;; Thus tt = (c + d*r).
|
|
| 642 | + (cond ((>= (abs r) +cdiv-rmin+)
|
|
| 643 | + (let ((br (* b r)))
|
|
| 644 | + (if (/= br 0)
|
|
| 645 | + (/ (+ a br) tt)
|
|
| 646 | + ;; b*r underflows. Instead, compute
|
|
| 647 | + ;;
|
|
| 648 | + ;; (a + b*r)*tt = a*tt + b*tt*r
|
|
| 649 | + ;; = a*tt + (b*tt)*r
|
|
| 650 | + ;; (a + b*r)/tt = a/tt + b/tt*r
|
|
| 651 | + ;; = a*tt + (b*tt)*r
|
|
| 652 | + (+ (/ a tt)
|
|
| 653 | + (* (/ b tt)
|
|
| 654 | + r)))))
|
|
| 655 | + (t
|
|
| 656 | + ;; r = 0 so d is very tiny compared to c.
|
|
| 657 | + ;;
|
|
| 658 | + (/ (+ a (* d (/ b c)))
|
|
| 659 | + tt))))
|
|
| 660 | + (robust-subinternal (a b c d)
|
|
| 661 | + (declare (double-float a b c d))
|
|
| 662 | + (let* ((r (/ d c))
|
|
| 663 | + (tt (+ c (* d r))))
|
|
| 664 | + ;; e is the real part and f is the imaginary part. We
|
|
| 665 | + ;; can use internal-compreal for the imaginary part by
|
|
| 666 | + ;; noticing that the imaginary part of (a+i*b)/(c+i*d) is
|
|
| 667 | + ;; the same as the real part of (b-i*a)/(c+i*d).
|
|
| 668 | + (let ((e (internal-compreal a b c d r tt))
|
|
| 669 | + (f (internal-compreal b (- a) c d r tt)))
|
|
| 670 | + (values e
|
|
| 671 | + f))))
|
|
| 672 | +
|
|
| 673 | + (robust-internal (x y)
|
|
| 674 | + (declare (type (complex double-float) x y))
|
|
| 675 | + (let ((a (realpart x))
|
|
| 676 | + (b (imagpart x))
|
|
| 677 | + (c (realpart y))
|
|
| 678 | + (d (imagpart y)))
|
|
| 679 | + (declare (double-float a b c d))
|
|
| 680 | + (flet ((maybe-scale (abs-tst a b c d)
|
|
| 681 | + (declare (double-float a b c d))
|
|
| 682 | + ;; This implements McGehearty's iteration 3 to
|
|
| 683 | + ;; handle the case when some values are too big
|
|
| 684 | + ;; and should be scaled down. Also if some
|
|
| 685 | + ;; values are too tiny, scale them up.
|
|
| 686 | + (let ((abs-a (abs a))
|
|
| 687 | + (abs-b (abs b)))
|
|
| 688 | + (if (or (> abs-tst +cdiv-rbig+)
|
|
| 689 | + (> abs-a +cdiv-rbig+)
|
|
| 690 | + (> abs-b +cdiv-rbig+))
|
|
| 691 | + (setf a (* a 0.5d0)
|
|
| 692 | + b (* b 0.5d0)
|
|
| 693 | + c (* c 0.5d0)
|
|
| 694 | + d (* d 0.5d0))
|
|
| 695 | + (if (< abs-tst +cdiv-rmin2+)
|
|
| 696 | + (setf a (* a +cdiv-rminscal+)
|
|
| 697 | + b (* b +cdiv-rminscal+)
|
|
| 698 | + c (* c +cdiv-rminscal+)
|
|
| 699 | + d (* d +cdiv-rminscal+))
|
|
| 700 | + (if (or (and (< abs-a +cdiv-rmin+)
|
|
| 701 | + (< abs-b +cdiv-rmax2+)
|
|
| 702 | + (< abs-tst +cdiv-rmax2+))
|
|
| 703 | + (and (< abs-b +cdiv-rmin+)
|
|
| 704 | + (< abs-a +cdiv-rmax2+)
|
|
| 705 | + (< abs-tst +cdiv-rmax2+)))
|
|
| 706 | + (setf a (* a +cdiv-rminscal+)
|
|
| 707 | + b (* b +cdiv-rminscal+)
|
|
| 708 | + c (* c +cdiv-rminscal+)
|
|
| 709 | + d (* d +cdiv-rminscal+)))))
|
|
| 710 | + (values a b c d))))
|
|
| 711 | + (cond
|
|
| 712 | + ((<= (abs d) (abs c))
|
|
| 713 | + ;; |d| <= |c|, so we can use robust-subinternal to
|
|
| 714 | + ;; perform the division.
|
|
| 715 | + (multiple-value-bind (a b c d)
|
|
| 716 | + (maybe-scale (abs c) a b c d)
|
|
| 717 | + (multiple-value-bind (e f)
|
|
| 718 | + (robust-subinternal a b c d)
|
|
| 719 | + (complex e f))))
|
|
| 720 | + (t
|
|
| 721 | + ;; |d| > |c|. So, instead compute
|
|
| 722 | + ;;
|
|
| 723 | + ;; (b + i*a)/(d + i*c) = ((b*d+a*c) + (a*d-b*c)*i)/(d^2+c^2)
|
|
| 724 | + ;;
|
|
| 725 | + ;; Compare this to (a+i*b)/(c+i*d) and we see that
|
|
| 726 | + ;; realpart of the former is the same, but the
|
|
| 727 | + ;; imagpart of the former is the negative of the
|
|
| 728 | + ;; desired division.
|
|
| 729 | + (multiple-value-bind (a b c d)
|
|
| 730 | + (maybe-scale (abs d) a b c d)
|
|
| 731 | + (multiple-value-bind (e f)
|
|
| 732 | + (robust-subinternal b a d c)
|
|
| 733 | + (complex e (- f))))))))))
|
|
| 734 | + (let* ((a (realpart x))
|
|
| 735 | + (b (imagpart x))
|
|
| 736 | + (c (realpart y))
|
|
| 737 | + (d (imagpart y))
|
|
| 738 | + (ab (max (abs a) (abs b)))
|
|
| 739 | + (cd (max (abs c) (abs d)))
|
|
| 740 | + (s 1d0))
|
|
| 741 | + (declare (double-float s))
|
|
| 742 | + ;; If a or b is big, scale down a and b.
|
|
| 743 | + (when (>= ab +cdiv-rbig+)
|
|
| 744 | + (setf x (/ x 2)
|
|
| 745 | + s (* s 2)))
|
|
| 746 | + ;; If c or d is big, scale down c and d.
|
|
| 747 | + (when (>= cd +cdiv-rbig+)
|
|
| 748 | + (setf y (/ y 2)
|
|
| 749 | + s (/ s 2)))
|
|
| 750 | + ;; If a or b is tiny, scale up a and b.
|
|
| 751 | + (when (<= ab (* +cdiv-rmin+ +cdiv-2/eps+))
|
|
| 752 | + (setf x (* x +cdiv-be+)
|
|
| 753 | + s (/ s +cdiv-be+)))
|
|
| 754 | + ;; If c or d is tiny, scale up c and d.
|
|
| 755 | + (when (<= cd (* +cdiv-rmin+ +cdiv-2/eps+))
|
|
| 756 | + (setf y (* y +cdiv-be+)
|
|
| 757 | + s (* s +cdiv-be+)))
|
|
| 758 | + (* s
|
|
| 759 | + (robust-internal x y)))))
|
|
| 760 | + |
|
| 761 | +;; Smith's algorithm for complex division for (complex single-float).
|
|
| 762 | +;; We convert the parts to double-floats before computing the result.
|
|
| 763 | +(defun cdiv-single-float (x y)
|
|
| 764 | + "Accurate division of complex single-float numbers x and y."
|
|
| 765 | + (declare (type (complex single-float) x y))
|
|
| 766 | + (let ((a (float (realpart x) 1d0))
|
|
| 767 | + (b (float (imagpart x) 1d0))
|
|
| 768 | + (c (float (realpart y) 1d0))
|
|
| 769 | + (d (float (imagpart y) 1d0)))
|
|
| 770 | + (cond ((< (abs c) (abs d))
|
|
| 771 | + (let* ((r (/ c d))
|
|
| 772 | + (denom (+ (* c r) d))
|
|
| 773 | + (e (float (/ (+ (* a r) b) denom) 1f0))
|
|
| 774 | + (f (float (/ (- (* b r) a) denom) 1f0)))
|
|
| 775 | + (complex e f)))
|
|
| 776 | + (t
|
|
| 777 | + (let* ((r (/ d c))
|
|
| 778 | + (denom (+ c (* d r)))
|
|
| 779 | + (e (float (/ (+ a (* b r)) denom) 1f0))
|
|
| 780 | + (f (float (/ (- b (* a r)) denom) 1f0)))
|
|
| 781 | + (complex e f))))))
|
|
| 782 | + |
|
| 783 | +;; Generic implementation of Smith's algorithm.
|
|
| 784 | +(defun cdiv-generic (x y)
|
|
| 785 | + "Complex division of generic numbers x and y. One of x or y should be
|
|
| 786 | + a complex."
|
|
| 787 | + (let ((a (realpart x))
|
|
| 788 | + (b (imagpart x))
|
|
| 789 | + (c (realpart y))
|
|
| 790 | + (d (imagpart y)))
|
|
| 791 | + (cond ((< (abs c) (abs d))
|
|
| 792 | + (let* ((r (/ c d))
|
|
| 793 | + (denom (+ (* c r) d))
|
|
| 794 | + (e (/ (+ (* a r) b) denom))
|
|
| 795 | + (f (/ (- (* b r) a) denom)))
|
|
| 796 | + (canonical-complex e f)))
|
|
| 797 | + (t
|
|
| 798 | + (let* ((r (/ d c))
|
|
| 799 | + (denom (+ c (* d r)))
|
|
| 800 | + (e (/ (+ a (* b r)) denom))
|
|
| 801 | + (f (/ (- b (* a r)) denom)))
|
|
| 802 | + (canonical-complex e f))))))
|
|
| 596 | 803 | |
| 597 | 804 | (defun two-arg-/ (x y)
|
| 598 | 805 | (number-dispatch ((x number) (y number))
|
| 599 | 806 | (float-contagion / x y (ratio integer))
|
| 600 | -
|
|
| 601 | - ((complex complex)
|
|
| 602 | - (let* ((rx (realpart x))
|
|
| 603 | - (ix (imagpart x))
|
|
| 604 | - (ry (realpart y))
|
|
| 605 | - (iy (imagpart y)))
|
|
| 606 | - (if (> (abs ry) (abs iy))
|
|
| 607 | - (let* ((r (/ iy ry))
|
|
| 608 | - (dn (+ ry (* r iy))))
|
|
| 609 | - (canonical-complex (/ (+ rx (* ix r)) dn)
|
|
| 610 | - (/ (- ix (* rx r)) dn)))
|
|
| 611 | - (let* ((r (/ ry iy))
|
|
| 612 | - (dn (+ iy (* r ry))))
|
|
| 613 | - (canonical-complex (/ (+ (* rx r) ix) dn)
|
|
| 614 | - (/ (- (* ix r) rx) dn))))))
|
|
| 615 | - (((foreach integer ratio single-float double-float) complex)
|
|
| 807 | + |
|
| 808 | + (((complex single-float)
|
|
| 809 | + (foreach (complex rational) (complex single-float)))
|
|
| 810 | + (cdiv-single-float x (coerce y '(complex single-float))))
|
|
| 811 | + (((complex double-float)
|
|
| 812 | + (foreach (complex rational) (complex single-float) (complex double-float)))
|
|
| 813 | + (cdiv-double-float x (coerce y '(complex double-float))))
|
|
| 814 | + |
|
| 815 | + (((foreach integer ratio single-float (complex rational))
|
|
| 816 | + (complex single-float))
|
|
| 817 | + (cdiv-single-float (coerce x '(complex single-float))
|
|
| 818 | + y))
|
|
| 819 | +
|
|
| 820 | + (((foreach integer ratio single-float double-float (complex rational)
|
|
| 821 | + (complex single-float))
|
|
| 822 | + (complex double-float))
|
|
| 823 | + (cdiv-double-float (coerce x '(complex double-float))
|
|
| 824 | + y))
|
|
| 825 | + (((complex double-double-float)
|
|
| 826 | + (foreach (complex rational) (complex single-float) (complex double-float)
|
|
| 827 | + (complex double-double-float)))
|
|
| 828 | + ;; We should do something better for double-double floats.
|
|
| 829 | + (cdiv-generic x y))
|
|
| 830 | +
|
|
| 831 | + (((foreach integer ratio single-float double-float double-double-float
|
|
| 832 | + (complex rational) (complex single-float) (complex double-float))
|
|
| 833 | + (complex double-double-float))
|
|
| 834 | + (cdiv-generic x y))
|
|
| 835 | + |
|
| 836 | + (((foreach integer ratio single-float double-float double-double-float)
|
|
| 837 | + (complex rational))
|
|
| 838 | + ;; Smith's algorithm, but takes advantage of the fact that the
|
|
| 839 | + ;; numerator is a real number and not complex.
|
|
| 616 | 840 | (let* ((ry (realpart y))
|
| 617 | 841 | (iy (imagpart y)))
|
| 618 | 842 | (if (> (abs ry) (abs iy))
|
| ... | ... | @@ -624,10 +848,23 @@ |
| 624 | 848 | (dn (* iy (+ 1 (* r r)))))
|
| 625 | 849 | (canonical-complex (/ (* x r) dn)
|
| 626 | 850 | (/ (- x) dn))))))
|
| 627 | - ((complex (or rational float))
|
|
| 851 | + (((complex rational)
|
|
| 852 | + (complex rational))
|
|
| 853 | + ;; We probably don't need to do Smith's algorithm for rationals.
|
|
| 854 | + ;; A naive implementation of coplex division has no issues.
|
|
| 855 | + (cdiv-generic x y))
|
|
| 856 | + |
|
| 857 | + (((foreach (complex rational) (complex single-float) (complex double-float)
|
|
| 858 | + (complex double-double-float))
|
|
| 859 | + (or rational float))
|
|
| 628 | 860 | (canonical-complex (/ (realpart x) y)
|
| 629 | 861 | (/ (imagpart x) y)))
|
| 630 | -
|
|
| 862 | +
|
|
| 863 | + ((double-float
|
|
| 864 | + (complex single-float))
|
|
| 865 | + (cdiv-double-float (coerce x '(complex double-float))
|
|
| 866 | + (coerce y '(complex double-float))))
|
|
| 867 | + |
|
| 631 | 868 | ((ratio ratio)
|
| 632 | 869 | (let* ((nx (numerator x))
|
| 633 | 870 | (dx (denominator x))
|
| ... | ... | @@ -656,6 +893,7 @@ |
| 656 | 893 | (build-ratio (maybe-truncate nx gcd)
|
| 657 | 894 | (* (maybe-truncate y gcd) (denominator x)))))))
|
| 658 | 895 | |
| 896 | +(declaim (ext:end-block))
|
|
| 659 | 897 | |
| 660 | 898 | (defun %negate (n)
|
| 661 | 899 | (number-dispatch ((n number))
|
| ... | ... | @@ -1804,46 +1804,13 @@ |
| 1804 | 1804 | #+double-double
|
| 1805 | 1805 | (frob double-double-float))
|
| 1806 | 1806 |
|
| 1807 | -#+(and sse2 complex-fp-vops)
|
|
| 1808 | 1807 | (macrolet
|
| 1809 | - ((frob (type one)
|
|
| 1810 | - `(deftransform / ((x y) (,type ,type) *
|
|
| 1811 | - :policy (> speed space))
|
|
| 1812 | - ;; Divide a complex by a complex
|
|
| 1808 | + ((frob (type name)
|
|
| 1809 | + `(deftransform / ((x y) ((complex ,type) (complex ,type)) *)
|
|
| 1810 | + (,name x y))))
|
|
| 1811 | + (frob double-float kernel::cdiv-double-float)
|
|
| 1812 | + (frob single-float kernel::cdiv-single-float))
|
|
| 1813 | 1813 | |
| 1814 | - ;; Here's how we do a complex division
|
|
| 1815 | - ;;
|
|
| 1816 | - ;; Compute (xr + i*xi)/(yr + i*yi)
|
|
| 1817 | - ;;
|
|
| 1818 | - ;; Assume |yi| < |yr|. Then
|
|
| 1819 | - ;;
|
|
| 1820 | - ;; (xr + i*xi) (xr + i*xi)
|
|
| 1821 | - ;; ----------- = -----------------
|
|
| 1822 | - ;; (yr + i*yi) yr*(1 + i*(yi/yr))
|
|
| 1823 | - ;;
|
|
| 1824 | - ;; (xr + i*xi)*(1 - i*(yi/yr))
|
|
| 1825 | - ;; = ---------------------------
|
|
| 1826 | - ;; yr*(1 + (yi/yr)^2)
|
|
| 1827 | - ;;
|
|
| 1828 | - ;; (xr + i*xi)*(1 - i*(yi/yr))
|
|
| 1829 | - ;; = ---------------------------
|
|
| 1830 | - ;; yr + (yi/yr)*yi
|
|
| 1831 | - ;;
|
|
| 1832 | - ;; This allows us to use a fast complex multiply followed by
|
|
| 1833 | - ;; a real division.
|
|
| 1834 | - '(let* ((ry (realpart y))
|
|
| 1835 | - (iy (imagpart y)))
|
|
| 1836 | - (if (> (abs ry) (abs iy))
|
|
| 1837 | - (let* ((r (/ iy ry))
|
|
| 1838 | - (dn (+ ry (* r iy))))
|
|
| 1839 | - (/ (* x (complex ,one r))
|
|
| 1840 | - dn))
|
|
| 1841 | - (let* ((r (/ ry iy))
|
|
| 1842 | - (dn (+ iy (* r ry))))
|
|
| 1843 | - (/ (* x (complex r ,(- one)))
|
|
| 1844 | - dn)))))))
|
|
| 1845 | - (frob (complex single-float) 1f0)
|
|
| 1846 | - (frob (complex double-float) 1d0))
|
|
| 1847 | 1814 | |
| 1848 | 1815 | ;;;; Complex contagion:
|
| 1849 | 1816 |
| ... | ... | @@ -34,6 +34,9 @@ public domain. |
| 34 | 34 | * #446: Use C compiler to get errno values to update UNIX
|
| 35 | 35 | defpackage with errno symbols
|
| 36 | 36 | * #453: Use correct flags for analyzer and always save logs.
|
| 37 | + * #456: Improve accuracy for division of complex double-floats
|
|
| 38 | + using Baudin and Smith's robust complex division algorithm
|
|
| 39 | + with improvements by Patrick McGehearty.
|
|
| 37 | 40 | * #458: Spurious overflow in double-double-float multiply
|
| 38 | 41 | * Other changes:
|
| 39 | 42 | * Improvements to the PCL implementation of CLOS:
|
| ... | ... | @@ -348,3 +348,211 @@ |
| 348 | 348 | (:tag :issues)
|
| 349 | 349 | (assert-equal -2w300
|
| 350 | 350 | (* -2w300 1w0)))
|
| 351 | + |
|
| 352 | + |
|
| 353 | + |
|
| 354 | +;; Rudimentary code to read C %a formatted numbers that look like
|
|
| 355 | +;; "-0x1.c4dba4ba1ee79p-620". We assume STRING is exactly in this
|
|
| 356 | +;; format. No error-checking is done.
|
|
| 357 | +(defun parse-hex-float (string)
|
|
| 358 | + (let* ((sign (if (char= (aref string 0) #\-)
|
|
| 359 | + -1
|
|
| 360 | + 1))
|
|
| 361 | + (dot-posn (position #\. string))
|
|
| 362 | + (p-posn (position #\p string))
|
|
| 363 | + (lead (parse-integer string :start (1- dot-posn) :end dot-posn))
|
|
| 364 | + (frac (parse-integer string :start (1+ dot-posn) :end p-posn :radix 16))
|
|
| 365 | + (exp (parse-integer string :start (1+ p-posn))))
|
|
| 366 | + (* sign
|
|
| 367 | + (scale-float (float (+ (ash lead 52)
|
|
| 368 | + frac)
|
|
| 369 | + 1d0)
|
|
| 370 | + (- exp 52)))))
|
|
| 371 | + |
|
| 372 | +;; Relative error in terms of bits of accuracy. This is the
|
|
| 373 | +;; definition used by Baudin and Smith. A result of 53 means the two
|
|
| 374 | +;; numbers have identical bits. For complex numbers, we use the min
|
|
| 375 | +;; of the bits of accuracy of the real and imaginary parts.
|
|
| 376 | +(defun rel-err (computed expected)
|
|
| 377 | + (flet ((rerr (c e)
|
|
| 378 | + (let ((diff (abs (- c e))))
|
|
| 379 | + (if (zerop diff)
|
|
| 380 | + (float-digits diff)
|
|
| 381 | + (floor (- (log (/ diff (abs e)) 2d0)))))))
|
|
| 382 | + (min (rerr (realpart computed) (realpart expected))
|
|
| 383 | + (rerr (imagpart computed) (imagpart expected)))))
|
|
| 384 | + |
|
| 385 | +(defun do-cdiv-test (x y z-true expected-rel)
|
|
| 386 | + (let* ((z (/ x y))
|
|
| 387 | + (rel (rel-err z z-true)))
|
|
| 388 | + (assert-equal expected-rel
|
|
| 389 | + rel
|
|
| 390 | + x y z z-true rel)))
|
|
| 391 | +;; Issue #456: improve accuracy of division of complex double-floats.
|
|
| 392 | +;;
|
|
| 393 | +;; Tests for complex division. Tests 1-10 are from Baudin and Smith.
|
|
| 394 | +;; Test 11 is an example from Maxima. Test 12 is an example from the
|
|
| 395 | +;; ansi-tests where (/ z z) didn't produce exactly 1. Tests 13-16 are
|
|
| 396 | +;; for examples for improvement iterations 1-4 from McGehearty.
|
|
| 397 | +(macrolet
|
|
| 398 | + ((frob (name x y z-true rel)
|
|
| 399 | + `(define-test ,name
|
|
| 400 | + (:tag :issues)
|
|
| 401 | + (do-cdiv-test ,x ,y ,z-true ,rel))))
|
|
| 402 | + ;; First cases are from Baudin and Smith
|
|
| 403 | + ;; 1
|
|
| 404 | + (frob cdiv.baudin-case.1
|
|
| 405 | + (complex 1d0 1d0)
|
|
| 406 | + (complex 1d0 (scale-float 1d0 1023))
|
|
| 407 | + (complex (scale-float 1d0 -1023)
|
|
| 408 | + (scale-float -1d0 -1023))
|
|
| 409 | + 53)
|
|
| 410 | + ;; 2
|
|
| 411 | + (frob cdiv.baudin-case.2
|
|
| 412 | + (complex 1d0 1d0)
|
|
| 413 | + (complex (scale-float 1d0 -1023) (scale-float 1d0 -1023))
|
|
| 414 | + (complex (scale-float 1d0 1023) 0)
|
|
| 415 | + 53)
|
|
| 416 | + ;; 3
|
|
| 417 | + (frob cdiv.baudin-case.3
|
|
| 418 | + (complex (scale-float 1d0 1023) (scale-float 1d0 -1023))
|
|
| 419 | + (complex (scale-float 1d0 677) (scale-float 1d0 -677))
|
|
| 420 | + (complex (scale-float 1d0 346) (scale-float -1d0 -1008))
|
|
| 421 | + 53)
|
|
| 422 | + ;; 4
|
|
| 423 | + (frob cdiv.baudin-case.4.overflow
|
|
| 424 | + (complex (scale-float 1d0 1023) (scale-float 1d0 1023))
|
|
| 425 | + (complex 1d0 1d0)
|
|
| 426 | + (complex (scale-float 1d0 1023) 0)
|
|
| 427 | + 53)
|
|
| 428 | + ;; 5
|
|
| 429 | + (frob cdiv.baudin-case.5.underflow-ratio
|
|
| 430 | + (complex (scale-float 1d0 1020) (scale-float 1d0 -844))
|
|
| 431 | + (complex (scale-float 1d0 656) (scale-float 1d0 -780))
|
|
| 432 | + (complex (scale-float 1d0 364) (scale-float -1d0 -1072))
|
|
| 433 | + 53)
|
|
| 434 | + ;; 6
|
|
| 435 | + (frob cdiv.baudin-case.6.underflow-realpart
|
|
| 436 | + (complex (scale-float 1d0 -71) (scale-float 1d0 1021))
|
|
| 437 | + (complex (scale-float 1d0 1001) (scale-float 1d0 -323))
|
|
| 438 | + (complex (scale-float 1d0 -1072) (scale-float 1d0 20))
|
|
| 439 | + 53)
|
|
| 440 | + ;; 7
|
|
| 441 | + (frob cdiv.baudin-case.7.overflow-both-parts
|
|
| 442 | + (complex (scale-float 1d0 -347) (scale-float 1d0 -54))
|
|
| 443 | + (complex (scale-float 1d0 -1037) (scale-float 1d0 -1058))
|
|
| 444 | + (complex 3.898125604559113300d289 8.174961907852353577d295)
|
|
| 445 | + 53)
|
|
| 446 | + ;; 8
|
|
| 447 | + (frob cdiv.baudin-case.8
|
|
| 448 | + (complex (scale-float 1d0 -1074) (scale-float 1d0 -1074))
|
|
| 449 | + (complex (scale-float 1d0 -1073) (scale-float 1d0 -1074))
|
|
| 450 | + (complex 0.6d0 0.2d0)
|
|
| 451 | + 53)
|
|
| 452 | + ;; 9
|
|
| 453 | + (frob cdiv.baudin-case.9
|
|
| 454 | + (complex (scale-float 1d0 1015) (scale-float 1d0 -989))
|
|
| 455 | + (complex (scale-float 1d0 1023) (scale-float 1d0 1023))
|
|
| 456 | + (complex 0.001953125d0 -0.001953125d0)
|
|
| 457 | + 53)
|
|
| 458 | + ;; 10
|
|
| 459 | + (frob cdiv.baudin-case.10.improve-imagpart-accuracy
|
|
| 460 | + (complex (scale-float 1d0 -622) (scale-float 1d0 -1071))
|
|
| 461 | + (complex (scale-float 1d0 -343) (scale-float 1d0 -798))
|
|
| 462 | + (complex 1.02951151789360578d-84 6.97145987515076231d-220)
|
|
| 463 | + 53)
|
|
| 464 | + ;; 11
|
|
| 465 | + ;;
|
|
| 466 | + ;; From Maxima. This was from a (private) email where Maxima used
|
|
| 467 | + ;; CL:/ to compute the ratio but was not very accurate.
|
|
| 468 | + (frob cdiv.maxima-case
|
|
| 469 | + #c(5.43d-10 1.13d-100)
|
|
| 470 | + #c(1.2d-311 5.7d-312)
|
|
| 471 | + #c(3.691993880674614517999740937026568563794896024143749539711267954d301
|
|
| 472 | + -1.753697093319947872394996242210428954266103103602859195409591583d301)
|
|
| 473 | + 52)
|
|
| 474 | + ;; 12
|
|
| 475 | + ;;
|
|
| 476 | + ;; Found by ansi tests. z/z should be exactly 1.
|
|
| 477 | + (frob cdiv.ansi-test-z/z
|
|
| 478 | + #c(1.565640716292489d19 0.0d0)
|
|
| 479 | + #c(1.565640716292489d19 0.0d0)
|
|
| 480 | + #c(1d0 0)
|
|
| 481 | + 53)
|
|
| 482 | + ;; 13
|
|
| 483 | + ;; Iteration 1. Without this, we would instead return
|
|
| 484 | + ;;
|
|
| 485 | + ;; (complex (parse-hex-float "0x1.ba8df8075bceep+155")
|
|
| 486 | + ;; (parse-hex-float "-0x1.a4ad6329485f0p-895"))
|
|
| 487 | + ;;
|
|
| 488 | + ;; whose imaginary part is quite a bit off.
|
|
| 489 | + (frob cdiv.mcgehearty-iteration.1
|
|
| 490 | + (complex (parse-hex-float "0x1.73a3dac1d2f1fp+509")
|
|
| 491 | + (parse-hex-float "-0x1.c4dba4ba1ee79p-620"))
|
|
| 492 | + (complex (parse-hex-float "0x1.adf526c249cf0p+353")
|
|
| 493 | + (parse-hex-float "0x1.98b3fbc1677bbp-697"))
|
|
| 494 | + (complex (parse-hex-float "0x1.BA8DF8075BCEEp+155")
|
|
| 495 | + (parse-hex-float "-0x1.A4AD628DA5B74p-895"))
|
|
| 496 | + 53)
|
|
| 497 | + ;; 14
|
|
| 498 | + ;; Iteration 2.
|
|
| 499 | + (frob cdiv.mcgehearty-iteration.2
|
|
| 500 | + (complex (parse-hex-float "-0x0.000000008e4f8p-1022")
|
|
| 501 | + (parse-hex-float "0x0.0000060366ba7p-1022"))
|
|
| 502 | + (complex (parse-hex-float "-0x1.605b467369526p-245")
|
|
| 503 | + (parse-hex-float "0x1.417bd33105808p-256"))
|
|
| 504 | + (complex (parse-hex-float "0x1.cde593daa4ffep-810")
|
|
| 505 | + (parse-hex-float "-0x1.179b9a63df6d3p-799"))
|
|
| 506 | + 52)
|
|
| 507 | + ;; 15
|
|
| 508 | + ;; Iteration 3
|
|
| 509 | + (frob cdiv.mcgehearty-iteration.3
|
|
| 510 | + (complex (parse-hex-float "0x1.cb27eece7c585p-355 ")
|
|
| 511 | + (parse-hex-float "0x0.000000223b8a8p-1022"))
|
|
| 512 | + (complex (parse-hex-float "-0x1.74e7ed2b9189fp-22")
|
|
| 513 | + (parse-hex-float "0x1.3d80439e9a119p-731"))
|
|
| 514 | + (complex (parse-hex-float "-0x1.3b35ed806ae5ap-333")
|
|
| 515 | + (parse-hex-float "-0x0.05e01bcbfd9f6p-1022"))
|
|
| 516 | + 53)
|
|
| 517 | + ;; 16
|
|
| 518 | + ;; Iteration 4
|
|
| 519 | + (frob cdiv.mcgehearty-iteration.4
|
|
| 520 | + (complex (parse-hex-float "-0x1.f5c75c69829f0p-530")
|
|
| 521 | + (parse-hex-float "-0x1.e73b1fde6b909p+316"))
|
|
| 522 | + (complex (parse-hex-float "-0x1.ff96c3957742bp+1023")
|
|
| 523 | + (parse-hex-float "0x1.5bd78c9335899p+1021"))
|
|
| 524 | + (complex (parse-hex-float "-0x1.423c6ce00c73bp-710")
|
|
| 525 | + (parse-hex-float "0x1.d9edcf45bcb0ep-708"))
|
|
| 526 | + 52))
|
|
| 527 | + |
|
| 528 | +(define-test complex-division.misc
|
|
| 529 | + (:tag :issue)
|
|
| 530 | + (let ((num '(1
|
|
| 531 | + 1/2
|
|
| 532 | + 1.0
|
|
| 533 | + 1d0
|
|
| 534 | + #c(1 2)
|
|
| 535 | + #c(1.0 2.0)
|
|
| 536 | + #c(1d0 2d0)
|
|
| 537 | + #c(1w0 2w0))))
|
|
| 538 | + ;; Try all combinations of divisions of different types. This is
|
|
| 539 | + ;; primarily to test that we got all the numeric contagion cases
|
|
| 540 | + ;; for division in CL:/.
|
|
| 541 | + (dolist (x num)
|
|
| 542 | + (dolist (y num)
|
|
| 543 | + (assert-true (/ x y)
|
|
| 544 | + x y)))))
|
|
| 545 | + |
|
| 546 | +(define-test complex-division.single
|
|
| 547 | + (:tag :issues)
|
|
| 548 | + (let* ((x #c(1 2))
|
|
| 549 | + (y (complex (expt 2 127) (expt 2 127)))
|
|
| 550 | + (expected (coerce (/ x y)
|
|
| 551 | + '(complex single-float))))
|
|
| 552 | + ;; A naive implementation of complex division would cause an
|
|
| 553 | + ;; overflow in computing the denominator.
|
|
| 554 | + (assert-equal expected
|
|
| 555 | + (/ (coerce x '(complex single-float))
|
|
| 556 | + (coerce y '(complex single-float)))
|
|
| 557 | + x
|
|
| 558 | + y))) |